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ABSTRACT

A critical study is made of the JWKB approximation
for phase shifts by comparison of the approximate phases with
those calculated by numerical solution of the radial wave
equation. A region of E - f - A* space is mapped out for the
Lennard-Jones (12-6) potential in which the JWKB approximation
is unsatisfactory. Reasons for the failure of the JWKB
approximation are noted, and a simple but effective method of
predicting the region of E - £ - A* space where failure occurs
is suggested. The study is continued by a comparison of the

quantal and semiclassical transport and total cross sections.
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It is shown that the JWKB transport cross sections are of
limited practical value and that the semiclassical total cross
sections are useful only at high values of E and low values

of A*. Particular attention is centered on features associated
with classical orbiting and with semiclassical rainbow and
glory scattering. An apparent sign change in the quantum
corrections for the viscosity cross section found by de Boer
and Bird is shown to be an artifact caused by the neglect

of the attractive part of the interaction potential. Finally,
small-angle gquantal differential cross sections for a
repulsive r potential are compared with some recent
semiclassical calculations. The behavior as exp(-cxz) at

small angles is found to be valid to larger angles than

previously thought.




I. INTRODUCTION

Elastic collisions between atoms and molecules are
described by the laws of quantum mechanics, A complete
quantal phase-shift calculation of scattering and transport
cross-sections, however, can be very laborious, especially
when large numbers of phase shifts are required; valid
approximations are therefore often made. Two main levels
of approximation exist: (1) the phase shifts can be approximated
instead of being calculated by direct numerical integration of
the radial wave equation, and (2) the various summations of
the phase shifts to produce cross sections can also be
approximated. When enough such approximations are made, the
results reduce to those of a purely classical calculation;
there are, however, intermediate stages between the pure quantal
and the pure classical calculations.

The object of this paper is to establish the domain of
validity of the "semiclassical" and classical approximations
for some atomic and molecular collisions, and to point out
some features that arise in cross sections when the scattering
potential has both attractive and repulsive branches. These
features are connected with the classical orbiting collisions,
and with scattering patterns known as glories and rainbows
from the analogous optical phenomena.1 Attention is centered
on the total scattering cross section and on the transport

cross sections for diffusion and viscosity, and only a few




remarks on the differential scattering cross sections are made.
Although the phenomena discussed are considered to be quite
general, detailed numerical calculations are for the most part
restricted to the Lennard-Jones (12-6) potential,

Comparison is also made with several recent studies
of molecular scattering.2'5 The previous calculations turn
out to be restricted to parameter values for which the semi-
classical (JWKB) approximation is quite accurate, and do not
really come very close to the truly quantal regions. Some of
their conclusions nmust therefore be treated with reservation.

II, GENERAL FORMULAS

In the phase-shift formulation, the differential

scattering cross section for central forces is

ox) = Zig %? (24+1) [jexp(Ziéz)-lj Pﬁ(cos X) 2, (1)

where k = pv/ﬁ is the wave number of relative motion, x is

the angle of deflection of the relative velocity vector, 6

4

is the phase shift for angular-momentum quantum number £, and
Pz(cos ¥ ) 1is a Legendre polynomial in cos ) . The total
scattering cross section S and the transport cross sections

S(n) are defined in terms of g(x ) by

v
S = 27rJ‘ o(x) siny dy, (2)
0



T
S(n)= ZiJ (1 - cos™y)olx) sin y dy. (3)
0

When o(y ) is substituted in Egs. (2) and (3), the integrations

can be carried out to yield6

S = _4_72r > (24 + 1) sin2 &y (4)
ke £

S(1)= ar = (L + 1) Sinz(é

2 T g1 09 (5)
(2) _ 4r (£+1) (£+2) . 2
ST T 2 % Ry - sint (G0 -5p (6)

which are the usual starting points for numerical calculations.
The summations run over all integral values of 7 from 0 to «
for distinguishable particles, but only over even or odd
integral values of { for indistinguishable particles. The

(1)

diffusion cross section S must always refer to distinguishable
particles or else it refers to a nonobservable process.

Accurate numerical values of the phase shifts 6£ can
be determined by solving the radial wave equation of the
relative motion either analytically or numerically. The former
approach is limited to some very simple scattering potentials;
the latter procedure is nearly always feasible for ''physically

reasonable'" potentials but it is laborious and time-consuming.

The approximation that is usually used for atomic and molecular




scattering is often called semiclassical, a term which we shall
use to mean that the summations over phase shifts are replaced
by integrations and that the phase shifts 65 are calculated
using the JWKB approximaticn with the Langer modification of
replacing £2(f+1) by (Z+%)2 in the centrifugal term. We write

this approximation as
el 1
6,=6(b) =k JA Ll - (b/r)2- (?(r)/Ei] * ar

o

[

®© 2
- k[\ [1 - (b/r)z*]dr9 (N
Jb L. ~

where q(r) is the scattering potential and

b= (4+3/k , E = uvz, (8)

Doj

The lower limits of the integrals are the outermost =zeroes

of their integrands; r, corresponds to the classical distance

of closest approach and b to the classical impact parameter.

A more general treatment7 shows that in cases where there is

more than one zero of the first integrand in Eq. (7), the result
still holds in the same form but the integration extends over all
ranges for which the integrand is real. We do not use this
extension in order to preserve the important semiclassical
relation between the phase shifts and the classical deflection

angle,

ds
P 1
= 2 37 . (9

wino
c1a
THO

x(b) =



For small phase shifts the JWKB approximation becomes equivalent
to the Born approximation,

Our first task will be to examine the range of validity
of the JWKB phase-shift approximation, and then to consider the

cross-section calculations.

II1. PHASE SHIFT CALCULATIONS

All phase shift calculations were performed by numerical

The numerical methods

*

the JWKB integration have been described elsewhere and the
numerical methods used for the integration of the radial wave
equation are described in the Appendix. Although nothing new

in principle is involved in these numerical methods, the programs

ran appreciably faster than those previously describedz_5

with
no loss of accuracy. The potential used was the Lennard-Jones

(12-6) ’

o) = 4 [/ - /0], (10)

where € is the well depth and @(0) = 0, The quantum effects

are characterized by the de Boer parameter,

hoj=

A* = h/c(2ue) ? , 11)

where h is Planck's constant and u the reduced mass of the

*

system, A" is the de Broglie wavelength of the colliding system

in units of o for an energy of E = €, or the thermal de Broglie




wavelength for a temperature of T = ¢/k. The value of A* for
light molecules ranges from 1.0 for tritium to slightly greater
than 3;0 for helium-3. The values for "classical''molecules
lie in the range 0 to 1.0; for example, A* is 0.59 for neon.
Earlier calculationsz”3 have concentrated on cases corresponding
to A* = 0.56 , and so have not encountered many of the striking
quantum effects obtained by varying A%*.

A comparison of the quantal and JWKB phase shifts
shows that there is always a region in which the JWKB approximation
is poor, and that this region grows in extent as A¥* increases.
An illustration of the type of failure encountered is shown in
Fig. 1, where 6£ is plotted as a function of E/e for values of
£ =5, 6, and 7 and A¥ =1.0. A fixed value of 4 corresponds to
a fixed value of the angular momentum, The vertical arrows
mark the energies for which classical orbiting occurs; the
failure of the JWKB phase-shift approximation is particularly
obvious at energies close to the orbiting energies. It is easy
to understand why this is so:! for energies below the orbiting
energy, penetration of the centrifugal barrier by tunneling
occurs, and since the JWKB approximafion contains no provision
for tunneling, the approximation is poor. For energies above the
orbiting energy, the incoming wave is partially reflected by
the centrifugal barrier and the JWKB approximation is again rather
poor. Thus at given values of [/ and A¥ there may be a range of
energies for which the JWKB approximation is unsatisfactory.

The parameter values for which the JWKB approximation is
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unsatisfactory can be represented as a region in the E-/ plane
for each value of A*. The regions for different A* can be
made to exhibit a clear family resemblance by using as one
coordinate not £ but A*(4+3), which is proportional to the

angular momentum b(21uE)%9 as follows:

AY (L + % = 27T(b/G)(E/€)% . (12)
Such a plot is shown in Fig. 2, constructed with the criterion
that the JWKB approximation is unsatisfactory when the discrepancy
with the quantal phase shifts is greater than 0,05 rad. Other
choices of criteria would narrow or widen the regions shown, but
would not change the overall picture. The choice of variable
given by Eq.(12) causes the regions to coincide along one edge.
This edge runs very close to the curve which defines classical
orbiting, and in fact continues beyond it near the curve which
defines rainbow scattering.

It is not surprising that the JWKB approximation fails
in the vicinity of classical orbiting, because of barrier
tunneling and partial reflection, but it is more surprising that
it also fails at energies E/e > 0.8, where no centrifugal barrier
exists. However, the reason is not hard to find, and can be
understood by reference to Fig. 3, where two effective potential

curves,

Pogs (/e = 4(a/0)'2 = a(o/m)® + [ (@) /)% [ (o/)2,
(13)



are shown, one with a barrier and one without. The ?eff curve
without the barrier retains a trace of the barrier in the form
of a "kink" in the curve. When the kink is rather abrupt, it
can cause a reflected wave to be set up which is not taken into
account in the JWKB approximation. This failure in the JWKB
formulation disappears only when the angular momentum becomes
still greater and the kink straightens out or when E is so

high that the kink appears unimportant in comparison, It is
surprising how high E must be before this occurs.

o predict th

e

ct

An important praciical question is how
regions, shown in Fig. 2, where the quantal calculations must
be used. It is little help to know that such regions do exist
if the only way to find them is by direct comparison of JWKB
and quantal phase shifts. It is clear that a reasonable estimate
of the low-energy edges of the regions is available from a
knowledge of the curve of classical orbiting and rainbow scattering;
the problem is therefore to predict the high-energy edges. A
satisfactory prediction can be obtained from a rough analysis
based on the idea that the high-energy edges indicate where
partial reflection by the centrifugal barrier or the kink
becomes negligible. All we really need to know is how the edge
energy varies with A*, for which purpose a rectangular barrier of
height ¢ and width a may serve as a sufficient mimic of the
complicated real barrier. The reflection coefficient R of such

a barrier for E > ?b is9



-t

4E(E—¢b)
R = 1 + 5 R (14)

2 _.
P, Sin-aa

where

K
I

1
[ 2020, ] e (15)

As E increases above Pos R decreases asymptotically to zero,
but with an oscillating component due to the sharp corners of
the square barrier. After the first zero of R, which occurs
for aa=1r, the value of R is always less than 0,1, and after the
second zero at aa=2m, the value of R remains less than 0,02,

So we can expect reflections to cause little trouble when aa

becomes greater than some constant, say roughly 2w, that is if
1
a [?M(E—po)] > h. (16)

Substituting for A* and taking E>>p_, we find this

condition becomes
E/e > constant x (A*)z. a7

Thus a plot of the value of the edge energy vs. (A*)2 should

be approximately a straight linelthrough the origin. This
conclusion is tested in Fig. 4, and shown to hold with surprising
accuracy both for a point near the bottom of the edge and for

the uppermost regions of the edges. That is, the relation holds
even when extrapolated into the region where the barrier has

degenerated into a kink,
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From Figs. 2 and 4 we can therefore predict with some
confidence the regions where quantal calculations of phase shifts
should be made for the Lennard-Jones (12-6) potential. The regions
will probably be somewhat different for other forms of potential,
but Figs. 2 and 4 indicate how the boundaries of the regions
can be located with the minimum of computational effort, using
the orbiting edge and Eq.(17). The regions always enclose the
orbiting curve, but as A* decreases they draw closer and
eventually become just a thin strip on either side of the orbiting
curve. Thus for small values of A* the JWKB approximation is
accurate except near classical orbiting.

Figure 2 also affords an explanation of several recent
conclusions about phase shifts for the 12-6 potential. For instance,
Bernstein2 found that his quantal phase shifts were remarkably
well correlated in terms of reduced parameters suggested by a
semiclassical analysis. The reason for this success can now be
seen to lie in the fact that Bernstein confined his calculations
to yalue;;qf AT 1ess than uniiy;:'nad he compared‘his reQuced
phase shi%tsfﬁith the;existinéjéuahtal'éalculatiohé for ‘larger A*,
carried put in a study:df hélidmffbg instance,;o ﬁe would have
found vefy large discrepancieé; As another example, the'pattern
of agreement and disagreement found by Chqi and Ross11 between
Bernstein's quantal calculations and their second-order WKB
calculations is nicely corrélated by Fig.‘4, The success of Marchi
and Mueller3 with the JWKB approximation is due to their fortuitous

avoidance, for the most part, of the regions shown in Fig. 4.
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This is largely due to their using A* = 0.56.

A few comments on the behavior of the phase shifts in
the region of classical orbiting are in order. Here the phase
shift changes rapidly over a very small range of b at fixed
E, and the impression is often obtained that there is a sharp
discontinuity in both value and slope of the phase shift at

10,2,3,12,13 ynite it is true that some

the orbiting point.
kinds of primitive semiclassical calculations do give such
behavior, the JWKB phase shifts (in the sense used here) are
much smoother, although exhibiting infinite slope and a
discontinuity at the orbiting point, as is shown schematically
in Fig. 5 (see also Fig. 3 of reference la). It is clear from
the semiclassical relation between & and x, Eq.(9), that & cannot
have a finite slope at orbiting, or else y would exhibit a cusp
instead of a singularity. The quantal phases are everywhere
discontinuous, strictly speaking, since £ takes on only‘integral
values. However, if we consider [/ as a continuous variable for
purposes of mathematical discussion, then & is contipuous across
the orbiting point, as shown in Fig. 5.

Figure 5 further shows that JWKB phase shift differences
can be more accurate than the phase shifts themselves because
the JWKB phase-shift curve runs very nearly parallel to the
quantal curve over a largé”range. One consequence of this is
that transport cross sectiéns, Which involve only differences
of phase shifts, may be more accurate than differential or

total scattering cross sections when calculated with JWKB phase

shifts,
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IV, CROSS SECTION CALCULATIONS

Relations among Quantal, Semiclassical, and Classical Cross Sections

We can now apply the results of the phase-shift analysis
to the calculation of various cross sections, to see the effects
of the quantum deviations. Ford and Wheelerla have previously
pointed out that there will always be regions where the quantal
and classical differential cross sections differ by a large
amount. Whether or not these deviations propagate into the
transport cross sections depends on the angle at which the
deviations in o(y) occur. The well-known divergence in the
classical o(y) at ¥y = 0 does not propagate into the transport
cross sections because of the (l—cosnx) weighting factors, That

the divergence at the rainbow angle Xr’ where O(Xr) divergesla’14

as ﬁ_l/s, also does not propagate into the transport cross sections

is more surprising, since X, can have any value for the 12-6

potential, depending on the energy. The fact is not obvious from

(n) in terms of o(y) given by Eq. (3), but

(n)

the expression for S
follows easily from the expressions for S in terms of phase
shifts given by Egs.(5) and (6). Passing to the semiclassical
limit, we replace the summations over £ by integrations over b
and the phase-shift differences by déﬂ/dz, which is related to ¥

according to Eq.(9), and obtain

o0 [o )
s(D_ 47TJ sinZ (x/2)b db = 27rj (1 - cos ¥ ) bdb, (18)
0 0
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o] xR
S(2)= ZW-(‘ sinzx bdb = 2W‘( (1—coszx ) bdb, (19)
0 0

These are exactly the classical expressions obtainable from Eq. (3)
by the classical substitution, o(yx) siny dy = bdb. Thus the
ever-present divergence in o(x) around X, is without influence in the
semiclassical limit.

The fact that a consistent semiclassical approximat}on of
the transport cross sections, including replacement of the
summations by integrations, leads to the exact classical result
is apparently not as well known as it deserves to be, although it

6,13 Since this

has certainly been pointed out previously.
particular semiclassical approximation turns out to be in fact
completely classical, it is perhaps better to use the term "JWKB
transport cross sections' to mean those that are evaluated with
JWKB phase shifts, but with the summations over / not converted
to integrations., Unless only a few phase shifts contribute to
the summation, however, such JWKB cross sections will differ but
little from completely classical cross sections (except in orbiting
regions as explained later).

Furthermore, since there are always situations (large
A* and low E) where quantum deviations are large for the transport
cross sections, we shall expect that in such cases the JWKB
approximation will be little better than the pure classical
approximation., That this is indeed the case is shown in Fig. 6,
(1)

where the percentage deviations of the classical and JWKB S

from the correct quantal results are shown as a function of energy
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for A*= 1.0 and 2,67,

The conclusion to be drawn from Fig. 6 is that it is
seldom worthwhile to bother with a JWKB approximation to S(n),
and that a numerically accurate elassical calculation is likely

to be better than a numerically cruder JWKB calculation with

13,15

an apparently better theoretical pedigree. This is of

course not true for the total scattering cross section S, for
which the classical approximation always fails completely, but

for which the JWKB approximation may be quite satisfactory provided

Ak o d : .
A% is notT © m . This i shown

in Ti
¥¥ 13 - AL -

ig, 7

00 large nor E
where the percentage deviatiomsof the JWKB S from the correct
quantal S are shown as a function of energy for several values
of A%,

Wood and Curtiss16 have given the first two correction

€D (2

terms for the quantum deviations of S and

proportional to ﬁ2 and h4. These arise in part from a higher-

, which are

order WKB expansion for the phase shifts,'7 and in part from
Euler-Maclaurin corrections which arise when the summations are
approximated by integrations. No numerical results have yet
been reported, only general fofmulas, and it remains to be seen
how fast the convergence will be in actual computations. It is
conceivabie that a combination of quantal and JWKB phase shifts,
based on Fig. 2, could be calculated and combined to form cross
sections with better accuracy for a cdmparable amount of labor
than can be obtained from use 6f the series in hza The question

is worth further investigation.
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Regardless of which method may be the most efficient
for numerical computation, the present results can be used to
throw some light on an interesting peculiarity in the quantum

deviations of the viscosity of He4 at low and high temperatures,

(2)

or what is the same thing, the quantum deviations of S at low

and high energies. At low energies, de Boer17 found that the

(2)

quantal S was smaller than the classical S(z) for the 12-6

potential with parameters corresponding to He4. He was not

able to go to higher energies at that time because of limited

vears later de Boer and Bird18

S 43
i1tie

ies., Some

ol
ac il

computing
. . . . . 2
carried out a semiclassical expansion in powers of K~ (the later

work of Wood and Curtiss is a revision and extension of this).

However, they limited their numerical calculations to an r_lz

repulsive potential, believing that the attractive r—6 term of

the 12-6 potential would be unimportant at high energies, For an

r_12 repulsive potential they found the quantal S(z)

@)

to be larger

than the classical S They therefore concluded that the

quantal and classical curves crossed at roughly E/e=4. The

actual situation is shown in Fig. 8, where the quantal and

(2)

classical S for the 12-6 potential are shown together with

(2) 12

the quantal S for the corresponding r~ potential,

(2)

@ = 4c (o/r)*2. It is seen that the quantal S lies below

(2)

the classical S at all energies for the 12-6 potential, and
that the apparent cross-over was an artifact caused by dropping

the attractive term in the potential.
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A semiclassical expansion of o(yx) at small angles in

14,19

powers of ﬁz has also been given recently. These quantum

deviations arise primarily from improvements to the stationary
phase method for evaluating the semiclassical differential cross
section.la Other quantum deviations, due to higher terms in the
Euler-Maclaurin summation formula and to higher-order WKB
approximations, are much smaller in this region. However, if the

expression for o(¥) in powers of 52 is used in Eq. (3) to evaluate

S(n), the stationary-phase small-angle quantum corrections are

o'-m:nf'ly attenunated bv the (1—c05nv\ weighting factors and no
o o \ V.4 DA~ o

longer dominate the other quantum corrections in the final

(n) a

expressions for S They are, in fact, of comparable magnitude,

as Wood and Curtissl6 have shown., In other words, the expressions

given for the quantum deviations of o(y) at small anglesl4’19

(n) 0

give only half the full16 quantum corrections to S

(n)

Indeed,
the approach to S through o()x) and Eq.(3) is very poor for
computational purposes, and the direct expressions in terms of

phase shifts, Eqgs.(5) and (6), are to be preferred,

Orbiting and Rainbow Effects

We now consider the effects of classical orbiting and
rainbow scattering on the computation of cross sections. Some
of these effects are already known, but their detailed influences
on numerical computations have often been overlooked. Consider

first the JWKB approximations to the cross sections — that is,



17

the JWKB phase shifts and summations over f£. A plot of ég vs. £
at constant E looks very much like Fig. 5, and as E is increased
the vertical portion of the curve (corresponding to classical
orbiting) moves to higher £ values, As the steep "front"
crosses each integral value of f , the phase shift for that £
takes a sudden jump and this may be reflected as a sharp jump

in the cross sections at that energy. (0f course the exact
effect on the cross section depends on the height of the front.,
If it is approximately s7 then no jump is observed; see Fig. 9

wrla +Thh =2
v T

A 1IMm i
wWiicIe ne missin for

n 3o ino
uul.y a3 1L A xR -LJ.J& L 4

[

his reason,) The variation

J

of the 5, and of the cross sections is smooth as E increases

Z
further, until the front reaches the next integral value of /[,
when another jump occurs. The result is a sawtooth appearance
(with some teeth missing) to the cross sections as a function
of energy. The sawteeth are generally more noticeable for the
S(n) than for the S, since the former involve phase shift
differences.

The orbiting sawteeth persist until E is so high that
orbiting is no longer possible, and only rainbow scattering
occurs. Then the front of the 53 vs. f curve becomes less steep
and there is only an undulation in the cross section, These
gentle undulations die out rapidly as the energy increases‘
further and the 5£ vs. [ curve becomes still more slowly-varying.
The effect of a correct quantal calculation in the

classical orbiting region is usually to make the fronts of the

6£ vs. 4 curves less steep; although the front may sometimes
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tunnel through the orbiting region with little change in shape,

somewhat as shown in Fig.l. The general effect is thus to round

off the tips of the orbiting sawteeth and reduce their magnitude

and, to some extent, their location (this is very severe if A

is large). The appearance is as if the orbiting sawteeth were

largely converted into rainbow undulations, as is indeed the

case, since quantal barrier penetration converts classical

orbiting into semiclassical rainbow scattering.,1a However,

some of the JWKB sawteeth are converted into sharp spikes, and

an occasional sawtooth may be missing entirely., as shown in Fig.9.

The precise relationship between the JWKB and quantal cross

sections can only be understood by a careful study of the relevant

JWKB and quantal phase shifts. Some of these phenomena have been

pointed out previously by Vogt and WannierzOa and by Dalgarno,

Mc Dowell, and Williams.13 Similar sawteeth have also been

noticed in calculations of JWKB spin-exchange cross sections.ZOb
In the classical approximation, the orbiting sawteeth

do not occur, and only the smoothly varying mean is found. The

rainbow undulations persist, however, and it is interesting to

inquire how this comes about. The reason is easiest to see in

(n)

terms of the expression for S in terms of o(y), given by

Eq. (3). The rainbow scattering produces a singularity and
discontinuity in o(y) at Xy in the classical approximation,l’21
but o(y) is smooth in the orbiting region. This rainbow in o (¥)

(n)

can have a large or small effect on S depending on the angle

at which it occurs, because of the weighting factors (1—cosnx)ﬂ
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At energies just above that for which classical orbiting ceases,
the value of Xp changes quite rapidly with E, and can change from

a large multiple of 7 to a smaller multiple of 7 for a small change
in E. The rainbow in o(y) thus shifts rapidly in angle as E

S(n)

is changed, and this augments if (1—cosnx) is large but

has little effect if (l—cosn ) is small. The net result is an
‘ X

(n)

undulatory behavior in S until the energy is high enough
that Xy becomes less than 77 and continues to decrease as E is
increased, whereby the (1—cosnx) factors quickly damp out the
undulation, This undulatory bhehavior was noticed in the
pioneering calculations of S(n) for the 12-6 potential by
Hirschfelder, Bird, and Spo1:z,22 but was incorrectly attributed
by them to orbiting rather than to rainbows., It was later
correctly interpreted by Dalgarno and Smith.23

The foregoing effects are illustrated in Fig. 9, which

(1)

shows S as a function of energy in the classical, JWKB, and
quantal limits for A= 1.0, The difficulty with the JWKB orbiting
sawteeth is that they become more numerous as A* becomes smaller
and classical behavior is supposedly approached more closely.

Thus the cross sections must be evaluated at very small intervals
of energy if the behavior is to be followed. If this is not

done, one obtains points more or less at random on the sawteeth,
and the appearance may be that of a random scattering of points
about the classical curve., Worse still, if the points are

calculated for a wide spacing of E, an entirely erroneous

impression may be obtained of undulations of much longer wavelength,
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The question therefore arises as to how to smooth out the sawteeth
without undue labor. The best way would be to use quantal phase
shifts where necessary and only to use JWKB phase shifts in
regions of proper validity as shown in Fig. 2. This can still
involve a great deal of numerical computation since there may

be just as many quantal undulations as there are JWKB sawteeth.

A much easier way would be to recognize that it is seldom
necessary to follow the undulations precisely, except possibly

for large A* when the JWKB approximation is bad anyway, since

the undulatiocns are usually wiped cut by subse
or by limited
resolution or velocity selection in the case of S. This being
the case, it is better to use the semiclassical approximation in
which the summations over / are replaced by integrations,

But we have already seen that this leads exactly to the classical
result in the case of the transport c¢ross sections. This
confirms our previous observation that it is seldom worthwhile

to bother with the JWKB approximation to S(n): if the JWKB
approximation is accurate, the classical calculation is both
easier and more accurate; if the classical calculation is
inaccurate so is the JWKB one.

From an examination of Fig, 9 it is evident that
classical transport cross sections at orbiting energies are
considerably in error for a gas with A*¥=1, It might therefore
appear that the transport properties of any light gas could

not be accurately predicted by classical theory at orbiting
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energies. This would suggest that classical theory might be
inadequate for atomic hydrogen below about 10,000 Ok (since
€ &~ 47 eV for the singlet state of H2), Yet recent classical
calculations of the viscosity of atomic hydrogen by Dalgarno
and Smithz3 have agreed within one or two percent with exact
quantal calculations by Buckingham and Fox24 down to 100 OK,
and semiclassical calculations of thermally averaged spin-
exchange cross sections for atomic hydrogen by Smi’thz5 have
been in good agreement with similar quantal calculations by
Dalgarno and Henry26 and by Buckingham and Fox27 down to 10 oK.
This apparent contradiction can nevertheless be explained in
terms of the results already discussed,.

There are two interaction potentials for atomic hydrogen
corresponding to the 1Zg and 32u states of H2' The triplet
potential has €=~0.0014 eV and o0x5.7a_, so that A*x 3.6,
Although A* is large, € is so small that most thermal energies
lie far above the orbiting region and quantum deviations are
small. The singlet potential has ¢x4,7 eV and 0 =~ 0.85 a_
so that A*¥=~0.4 and the classical approximation is accurate,
The major error is thus the lack of the orbiting sawteeth for
the singlet cross sections, but these are effectively eliminated

by the subsequent thermal averaging and the final classical

and quantal results are nearly equal,
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Glory Effects

The effects of forward glory scattering are worth
a few comments. Classically, glory scattering occurs at
the point where the deflection curve ) crosses the b-axis,
and quantally occurs at the point where 6z vs., £ has a
maximum, as shown in Fig. 5. Here o(yx) is infinite, but
o(x) sin y is :Einite.1 The effect on the transport cross
sections is simply to lower them slightly, because the weight
factors (1—cosnx) are all zero at y =0. This is probably the
reason that the small attractive part of the 12-6 potential

(2)

had such an influence on S at high energies, as was shown

in Fig. 8: the effect of the attraction, even though it is
weak, 1is to produce a forward glory which is absent for a purely

repulsive potential. This lowering can also be easily understood

S(n)

from the formulae for in terms of the sums over 6£ given

by Eas.(5) and (6). In the vicinity of the glory, 53 changes

very slowly with £, so that (5£+n —6ﬂ) and hence sinz(é -5

2

J+n
is nearly zero, and the phase shifts around the glory do not

(n)

contribute much to S .
The effect of the glory on the total scattering cross
section is much more dramatic. Because 5£ is slowly varying,

there is a whole set of terms in the summation for which

sin2 6£ is nearly the same. For other terms 63 varies more

rapidly and hence sin2 55 oscillates. Whenever the value of 63

near the glory is near 7/2, sinzéz takes on its maximum value
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and there is a contribution to the cross section from the glory
phases. Whenever 63 near the glory is T, sin26ﬂ is small and
there is no contribution to the cross section from the glory
phases. Thus S vs. E undulates at low energies, as the values
of the glory phases pass successively through /2 and 7. This
undulatory behavior was first noticed by Bernstein,4 who also
pointed out that the number of undulations was related (semi-
classically) to the number of bound states of the potentialg28
The phenomenon has since been observed experimentally and analysed
in detail,29 We need say nothing further about it except to

remark that the orbiting undulations (or semiclassical sawteeth)
will be superposed on the glory undulations. For small A¥ this is
an unimportant effect and can be removed by replacing the summation
by an integration, or by just drawing a smooth curve through a set
of calculated points., However, as A* increases the glory
undulations become fewer and the orbiting undulations become of
comparable importance. Finally for large A* there are no glory
undulations at all, but promiment orbiting undulations. A little
care is thus necessary in drawing conclusions about the number

of bound states from the number of extrema in S vs. velocity.

For instance, there are several low-velocity extrema in S for

A* = 2.67 (corresponding to He4),but there is at most one bound

10,30 These extrema are in fact related to classical

state,
orbiting rather than to glory scattering. In actual practice
there should be no real difficulty, since the location of the

orbiting undulations, if they are present, can be predicted from
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a knowledge of the orbiting line and its continuation, the

rainbow scattering line,

Small-Angle Differential Cross Sections

As a final example we compare the differential cross
section for a pure r_lz repulsive potential as calculated from
the exact quantal phase shifts and from some recently derived19

semiclassical approximations. The latter were given in two

parts,; one valid at very small angleg and the other at larger
angles where the scattering is nearly classical, For a potential

varying as r_S, the small angle result is

2 2.2
o0 - (i) [ 10w ()] o]~ 22T

where f(s) is a numerical constant equal to 1.078 for s=12,

The nearly classical result is

GG =gy GO | 1+ xR e ] (21)

which does not claim to do more than supply an indication of
the region where quantum deviations begin to be important. In
particular, Eq. (21) will not exhibit any quantal oscillations,
but will give only the mean value.

The numerical comparison is shown in Figs. 10 and 11,

which were calculated with the potential

P = 4<—:(o/r)12 , (22)
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using an energy E/¢ = 45 and de Boer parameters of A¥= 0,50 and
2.67, The quantum oscillations at larger angles, due to the
Legendre polynomials in the expression for g(X), are indeed

not reproduced by Eq.(21). The small-angle result of Eq. (20),
however, is in remarkably good agreement with the exact results
out to much larger angles than originally claimed,19 provided
that the exact value of the total cross section S is used in
Eq. (20). The agreement is not so good if an approximate

value of S based on the Massey—Mohr31 approximation to the JWKB
phases is used. This approximate S is given for s=12 by

the expression

S =Fy, (46012/ﬁv)2/11 , (23)

where19 F.,= 6.584., The Massey-Mohr approximation is the limiting

12
form taken by the JWKB formula for small phase shifts; in the
cases shown in Figs. 10 and 11, the phase shifts which contribute
most strongly to S are not so small (of the order of 0,2 rad),
and consequently Eq. (23) is not very accurate.

It is also remarkable how closely the Massey-~Mohr value
of the critical angle Xe describes the location of the angle
where the quantal o(y) crosses the nearly classical o(y) for

the second time, after which it oscillates rather symmetrically

about the classical curve. The value of the critical angle is

Xe = n/ (kr ) = n/(ko), (24)
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where r, is the classical distance of closest approach for

scattering through the angle X+

V. CONCLUSIONS

Although our numerical calculations have been
restricted to a particular potential model, we believe the

following conclusions are fairly general:

(1) The JWKB approximation for the scattering phase shifts
always fails in a certain region whose extent depends on the
value of the de Boer parameter A*.,  The boundaries of this region

can be predicted on the basis of a small number of calculations.

(2) The JWKB approximation is essentially useless for the
calculation of transport cross sections. For low energies or
large A* it is inaccurate, and where it is accurate the purely
classical approximation gives the same averaged cross sections and

is easier to use.

(3) The JWKB approximation is useful for the calculation of
total scattering cross sections, for which the classical approx-
imation always fails, but it is accurate only for high energies

or for small values of A*,

(4) The analogue of classical orbiting collisions causes several
peculiar features to appear in the cross sections, and this

behavior must be taken into account in detailed comparisons of



27

experiment and theory.

(5) The differential cross section behaves very nearly as
exp (—cxz) out to the Massey-Mohr critical angle'x69 and then

oscillates about a nearly classical mean value,.
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APPENDIX: CALCULATION OF QUANTAL PHASE SHIFTS

A number of effective methods for calculating quantal

2,10,32

phase shifts have been described in the literature. In

the present work, the radial wave equation in the form

2 2
6@ [(2n\” E_sued _ (20} (4 _ 2] (py=0
dpz A* c P2 A* p12 p6 J4 ’

(25)
where p= r/c, was integrated using Numerov's procedure.

2

33

This is based on the relation

2
- 29 1 Vot @ /1D [y 5 £(o 410y (o D ] (26)
- b

1- (n*/12) £ (p )




28

where y = Gz(pn), h = p-p,_q, and

2 2
2w 4 4 £(2+1) 2 E
o () (k) (2) 1
AN & R/ Y \ /
33

It can be shown that the first-order error per cycle for the
quadrature is n® yVI/24O.

The program performed in the following way. The
radial equation was integrated outwards from a point where the
solution was essentially zero. In practice it was found that
the exact choice of starting values was not critical; the two

initial values were usually chosen to be equal and of the
6

order of 10 ~. The integration was continued until the
potential was less than 10—6 the total energy, that is until
4 _._i < 10'6 E (28)
12 6 c
P P
A check was then commenced for the next change in sign of
the solution Gz(p). When this occurred; the integration was

carried out for two more steps and the position of the zero
found by interpolation.
It is well known that the solution of Eq. (25) when

the potential is zero is of the form

1 1
Gy(p) = Ap* Jp 1 (k*0)+ Bp? J_, 1 (k*p), (29)
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where k*= ko, and that the phase shift 63 is given by

6£ = arc tan [(—l)ﬂ B/A] . (30)

If po is the position of the last recorded zero of GE(p), it

follows immediately that

5, = arc tan [(—1)3 Tpey %)/ I,y (k*po)] o (31)

+2

The Bessel functions were calculated from a recursion relation,
with J; and J ; as starting points.
2 -2

The program was started with £=0, and the value of

Il*;

was increased by 1 after each phase shift was found. This was
continued until four successive phase shifts were less than 0,001,

1 @

The program then calculated the cross sections S, S
(even ¥), S(2) (odd £), and S(S). An option of calculating
the differential cross sections at specified angles was also
provided. Another energy could thén be read in and the whole
calculation repeated.

It has been previously notedlo’32

that phase shifts

calculated by procedures similar to the foregoing are slightly
in error because of the residual effect of the attractive tail
of the potential. A small correction was therefore made to the
calculated phase shifts, based on using the JWKB approximation

to continue the solution Gﬂ(p) beyond its last recorded zero

at Po- This correction had the form

6z(true) = 6£(apparent) + Db, (32)
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where 5£(apparent) was the value from Eq. (31), and

o0 9 1

2
21 L(4+1)
wo-e] [ (7) 22 - 2]
JA N | ‘A*, €k*2 (k*o‘z
i 7 |
6
1
2
(k"p)
At large separations, ¢ for the 12-6 potential can be approximated

by —4€/p6, and Eq. (33) becomes, after expansion of the integrands:,lo’32

)
&

Aézg—g-—5—<2_’;£ 1+5_z.£ﬁ_];)_2.+ o0 o . (34)
Bk*p A 14 (k*o )

In practice this correction was always less than 0.0001 rad.
Very accurate phase shifts for the Lennard-Jones (12-6)
potential have been obtained for A¥= 3.08 and 2.67 (corresponding

to He3 and He4).10 These were later used by Keller34 to

@)

calculate the viscosity cross sections S Comparison of
our calculated 6z with Keller's tables showed very close
agreement, the discrepancy between the two calculations being
always less than 0,005 rad. A comparison of our calculated
S(z) with these tables also showed close agreement, the largest
discrepancy being of the order of 0.2%,

It is difficult to estimate the time required to calculate
a single phase shift by the present program, but a mean time, as

determined on a sample of 10,000 phases, 1is about 0.5 sec on an

IBM 7090.
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Fig. 3 -
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FIGURE CAPTIONS

Phase shifts as a function of energy for the Lennard-
Jones (12-6) potential with A*= 1.0, showing the failure
of the semiclassical JWKB results (broken curves) as
compared with the exact quantal results (solid curves).
The vertical arrows mark the classical orbiting energies.
An apparent case of resonant barrier-tunneling is seen

for £=5.

Regions in which the JWKB and exact quantal phase shifts
differ by more than 0.05 radian for a 12-6 potential

are exhibited as loops in the energy-angular momentum
plane. The dashed curve shows where classical orbiting
and rainbow scattering occur, the black dot marking the

transition point from one to the other.

Effective potential energy curves, with ranges of E/€
indicated for which the JWKB phases are of unsatisfactory
accuracy. Two curves are shown, one for which classical
orbiting occurs, and one for which it cannot occur.

These have centrifugal terms (or angular momenta)

1
corresponding to (b/c) (E/e)2 = 1.3 and 1.7, respectively.

Plot of E/e vs. (A*)2 for the high-energy edges of the
regions shown in Fig. 2. The upper line corresponds

to the maximum value of E/e for a given value of A%, and
the lower line corresponds to the value of E/ for given

1
A* and angular momentum (bt ) (E£E)2 = 1.0.
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Fig. 5 - Schematic diagram of the JWKB phase shift and the
corresponding classical deflection angle, showing the
behavior around orbiting and a forward glory. The
correct quantal phase shift is indicated by the dashed
curve, (The results shown actually correspond approximately

to E/e = 0.4 and A*=1.0.)

Fig. 6 - Percentage deviations of the classical (solid curves)
and JWKB (dashed curves) diffusion cross sections S(l)
from the correct quantal results, with.AS(1)= S(l)(approx.)

—S(l)(quantal).

Fig. 7 - Percentage deviations of the JWKB total scattering cross
sections S from the correct guantal results, with

AS=S (approx.)-S(quantal) .

(2)

Fig. 8 - Viscosity cross section S for He4 as calculated
classically and quantally for the 12-6 potential, and
quantally for the inverse 12th power repulsive potential,
The originally conjectured connection between high and
low energy results is shown as a dashed curve (de Boer

and Bird). For He4 the quantal summations run over only

even values of 4.

Fig. 9 - Classical, JWKB, and quantal diffusion cross sections

S(l) for A*= 1, showing orbiting sawteeth and

undulations as discussed in the text.




Fig.

Fig.
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10 - Differential scattering cross section for an

11

inverse 12th power repulsive potential, with

%k
E/e = 45 and A = 0,50, Curves A and B are the

L aiva 1

small-angle approximation of Eq,.(20), curve A
being calculated with the exact value of S and

curve B with an approximate value of S from Eq. (23).

Differential scattering cross sections as in Fig. 10,
but with A*= 2.67. The classical curves are
identical in the two figures, but the scales are

shifted,
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